Each year, between 300,000 and 700,000 cases of OHCA (out-of-hospital cardiac arrest) are recorded across Europe[3]. Despite advances in medicine, survival rates for OHCA patients remain low. How can we increase the chances of survival for individuals who experience cardiac arrest outside of a hospital setting? How can we improve the quality of life for patients discharged after OHCA-related hospitalization? And what role does TTM (Targeted Temperature Management) play in this process?
We explain below.
OHCA – causes and consequences
Sudden cardiac arrest outside of a hospital setting is most often caused by cardiac-related conditions. In the vast majority of cases, coronary artery disease and acute coronary syndromes are the underlying factors behind OHCA. The most common immediate causes include ventricular fibrillation, asystole, and pulseless electrical activity (PEA)[4].
The health consequences of OHCA are severe. Patients who survive cardiac arrest often develop post-cardiac arrest syndrome (PCAS), which includes:
· brain injury,
· myocardial dysfunction,
· ischemia of vital organs,
· the underlying condition that caused the cardiac arrest[5].
Unfortunately, for many patients, OHCA has a tragic outcome—even when emergency intervention is prompt. Survival rates for out-of-hospital cardiac arrest remain very low.
Out-of-hospital cardiac arrest – survival rate
Statistics show that only 10–15% of patients brought to hospitals after OHCA survive until discharge. However, among those who do survive, only 50–80% retain satisfactory neurological function. These numbers highlight the severity of the problem and the urgent need to implement effective therapeutic strategies[6].
Additionally, hypoxic-ischemic brain injury occurs in 50% of patients with restored circulation. This condition often leads to death or severe neurological impairment, resulting in long-term disability and significantly reduced quality of life[7].
TTM and prognosis after out-of-hospital cardiac arrest
The introduction of modern treatment methods, including Targeted Temperature Management (TTM), has improved neurological outcome statistics following OHCA.
The use of therapeutic hypothermia is a proven method for reducing the risk and extent of neurological damage after cardiac arrest. Lowering the body temperature to 32–34°C for 12 to 24 hours helps protect neurons from secondary injury. This is achieved by reducing the brain’s oxygen demand, limiting the harmful effects of intracellular calcium overload, and suppressing the inflammatory response.
The effectiveness of therapeutic hypothermia is supported by clinical studies and data. Research has shown that intentional body temperature reduction decreases mortality rates and leads to better neurological outcomes—both at hospital discharge and six months later[8].
What devices are used for TTM?
Modern TTM systems consist of wraps, blankets, pads, and a main control unit that regulates their temperature. The device is operated via a user-friendly touchscreen panel, allowing medical staff to select a cooling protocol and adjust temperature changes in increments as precise as 0.05°C.
TTM equipment has versatile clinical applications. It can be used to treat patients after cardiac arrest, brain injury, ischemic stroke, fever, or trauma.
The survival rate after OHCA remains low. Moreover, individuals who do survive often suffer from serious neurological complications. TTM and therapeutic hypothermia offer a real opportunity to improve patient outcomes and enhance post-hospitalization quality of life. For healthcare facilities, this is a clear signal to consider investing in targeted temperature management systems.
[1] B. Horosz, M. Malec-Milewska, Metody przeciwdziałania śródoperacyjnej hipotermii, w: Anestezjologia Intensywna Terapia 2014, tom 46, numer 2, 105–110.
[2] B.Horosz, A.Adamiec, M. Malec-Milewska, H. Misiołek, Wytyczne Polskiego Towarzystwa Anestezjologii i Intensywnej Terapii dotyczące zapobiegania niezamierzonej śródoperacyjnej hipotermii, w: Anestezjologia Intensywna Terapia 2021; 53, 5: 376–386.
[3] P. Trzeciak,,D. Barwińska-Trzeciak, M. Gąsior, Pozaszpitalne zatrzymanie krążenia – trudny problem bez prostych rozwiązań, w: Kardiologia po Dyplomie, 2020, nr 1.
[4] P. Trzeciak,,D. Barwińska-Trzeciak, M. Gąsior, Pozaszpitalne zatrzymanie krążenia – trudny problem bez prostych rozwiązań, w: Kardiologia po Dyplomie, 2020, nr 1.
[5] Jerry P. Nolan, Postępowanie w zespole poresuscytacyjnym – najnowsze doniesienia, w Medycyna po Dyplomie, 2012.
[6] P. Trzeciak,,D. Barwińska-Trzeciak, M. Gąsior, Postępowanie w zespole poresuscytacyjnym – najnowsze doniesienia, w Medycyna po Dyplomie, 2012.
[7] J. Staszewski, Minimalizowanie hipoksemiczno-niedokrwiennego uszkodzenia mózgu po resuscytacji krążeniowo-oddechowej – podsumowanie wytycznych AAN, Neurologia po Dyplomie, 2017.
[8] Krzysztof Pstrągowski, Marek Koziński, Mirosław Jabłoński, Tomasz Fabiszak, Eliano Pio Navarese, Jacek Kubica, Optymalizacja postępowania w nagłym pozaszpitalnym zatrzymaniu krążenia w przebiegu ostrego zawału serca – opis przypadku i przegląd piśmiennictwa, w: Folia Cardiologica Excerpta 2011, tom 6, nr 4, 270–276.